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J. Phys. A: Math. Gen. 15 (1982) 1291-1308. Printed in.Great Britain 

Langevin approach to the dynamics of interacting 
Brownian particles 

P N Pusey and R J A Tough 
Royal Signals and Radar Establishment, Malvern, Worn, WR14 3PS, UK 

Received 22 July 1981, in final form 21 September 1981 

Abstract. We describe an approach to the dynamics of particles in liquid suspension, based 
on Langevin equations, which allows rather direct calculation of power series expansions in 
time T of such quantities as the particle velocity autocorrelation function, mean-square 
displacement and dynamic structure factors. The expansions are evaluated to order T~ if 
hydrodynamic interactions are neglected, but only to order T in their presence. The 
longer-time diffusion coefficients are also considered, and the importance of the structural 
relaxation time T~ to the theoretical development is emphasised. Further similarities 
between the dynamics of particle suspensions and atoms in simple fluids are pointed out. 

1. Introduction 

The dynamics of interacting spherical microscopic particles suspended in a liquid are 
frequently described theoretically by the generalised Smoluchowski equation, essen- 
tially a many-particle diffusion equation. In this way, for example, Ackerson (1976) 
calculated the first two terms in a MacLaurin power series expansion in time T of the 
dynamic structure factor F(K, T) (which can be measured by inelastic light or neutron 
scattering). Here we develop an alternative (though equivalent, see e.g. Zwanzig 1969) 
approach, based on Langevin equations, which has two advantages. Firstly, the 
physical principles and assumptions involved are displayed clearly, particularly because 
of the more explicit treatment of particle velocities inherent in the Langevin approach 
and the natural emergence of characteristic timescales (see § 2.1). Secondly, the 
calculations can be considerably simplified. Thus, if hydrodynamic interactions are 
neglected, we are able to calculate F(K, T) to order T~ as well as obtaining, apparently 
for the first time, short-time expansions for the particle velocity autocorrelation 
function # (T) and the related mean-square particle displacement (0 2). 

Incorporation into this approach of hydrodynamic interactions., the coupling of the 
motions of different particles through hydrodynamic flows induced in the suspending 
liquid, has proved more difficult than originally expected and will be discussed else- 
where. However, as described in § 3, we have been able to calculate rather directly, to 
order 7, a short-time expansion of F(K, T) which includes the effects of hydrodynamic 
interactions. 

The approach described here also allows direct derivation of formal expressions for 
the long-time macroscopic collective and self-diff usion coefficients of the Brownian 
particle system ( 0  4). 

In I§ 2-4 we attempt a logical development of the theory without detailed reference 
to previous work. In § 5 our results are discussed both in general and in the light of 
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previous work. In particular we emphasise the importance of the structural relaxation 
time rI (9 2.1) to the theoretical development (see 9 5.3). In § 5.2 we also consider the 
similarities, which have been recognised for some time, between the dynamical 
properties of particle suspensions and those of atoms in dense simple liquids. 

2. Short times, no hydrodynamic interactions 

2.1. The theoretical frame work 

Throughout § 2 hydrodynamic interactions will be neglected. In practice, neglect of 
hydrodynamic interactions is only justified in dilute suspensions, for example at volume 
fractions 4 less than about 0.01. In this case the typical interparticle spacing is many 
times the particle radius, so that the direct interparticle interactions must be of long 
range if their effect is not also to be negligible. The best known example of this is the 
repulsive Coulombic interaction between highly charged particles for which it has been 
established experimentally (e.g. Brown et a1 1975, Pusey 1978) that, in dilute suspen- 
sions (4 < at low electrolyte concentrations, the long-range Coulombic inter- 
actions have a strong influence on the particle dynamics whereas the effect of hydro- 
dynamic interactions is essentially undetectable. Nevertheless, the hypothetical situa- 
tion of arbitrary shorter-range direct interactions (which only affect particle dynamics at 
higher volume fraction) but negligible hydrodynamic interactions is of considerable 
theoretical interest (see 9 5.2). Thus in 9 2, although we neglect hydrodynamic inter- 
actions, we will not specify the nature of the direct interaction. 

The starting point is the Langevin equation for particle j in a suspension containing 
N identical interacting spheres (see e.g. Uhlenbeck and Ornstein 1930, reprinted in 
Wax 1954): 

Here r and U are particle positions and velocities and the subscript 1 indicates a single 
Cartesian component; m is the particle mass and f its friction coefficient; 9 is the 
solvent-induced ‘random force’ which is assumed to fluctuate rapidly compared with 
any other process of interest; V[{ri(t)}] is the potential energy of the direct interaction 
which depends on the instantaneous positions {ri(t)} of all the particles; -au/arjl is thus 
one component of the instantaneous interaction force on particle 1. Equation (2.1) can 
be integrated to give the displacement Aril(?) of particle 1 in time T (Uhlenbeck and 
Ornstein 1930, p 831): 

Aril(?) rjl(7) -rji(O) 

Here hj(~)  is the random or ‘Brownian’ displacement of particle j which would occur 
in the absence of interparticle interactions; Q, defined by 

TB = mlf,  (2.3) 
can be taken as the fluctuation time of the particle velocities in response to the solvent 
forces. (For a particle of radius 250 A, for example, 78 = 1.5 X lO-”s (Pusey 1975); in 
this short time the particle moves only about 0.3 A, 1/800th of its radius.) We now 
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specialise to a timescale where 7 >> rB; this is the regime of validity of the generalised 
Smoluchowski equation and that investigated by most experiments on particle suspen- 
sions. Equation (2.2) then simplifies to 

The interaction force is expanded as a Taylor series in particle displacements: 

Here italic subscripts are particle labels and run from 1 to N: greek subscripts indicate 
Cartesian components and run from 1 to 3; we have also adopted the notation 
U = U[{ri(0)}]. Iterative use of (2.4) and (2.5) gives an expression for the total particle 
displacement in terms of zero-time spatial derivatives of U and the random displace- 
ments {ArBi}: 

By definition 
r T  

where %j(t) is the 'Brownian component' of particle velocity, the velocity particle j 
would have in the absence of interparticle interactions. Thus differentiation of (2.4) 
gives 

(2.9) uj1(7) = %j1(7) + z)Ij1(7), 
where the 'interaction component' of particle velocity, Z)I~I(T), is given by 

(2.10) 
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and describes the ‘drifting around’ of particle j in the interparticle force field. The 
Brownian component of velocity has a large mean-square value (&)  = kT/m ( k  is 
Boltzmann’s constant, T the temperature) and fluctuates rapidly on timescale TB (see 
above). Direct calculation (Pusey 1975) shows that the interaction component typically 
has mean-square value (U:)<< (U:); however, it fluctuates much more slowly on the 
timescale T~ >> T ~ ) ,  characteristic of significant changes in the spatial configuration 
{ri(t)}  of particles which cause a significant change in the force aU/arj, (equation (2.10)).  
Nevertheless, the quantities ( u ~ ) T ~  and ( u : ) ~ ,  which, roughly speaking, describe the 
relative contributions of solvent forces and interaction forces to the particle diffusion 
coefficients, can often be comparable in magnitude (Pusey 1978, PhilIies and Wills 
1981). In (2 .9) ,  vI j1(7)  can be expanded to give (most directly by differentiation of (2.6)) 

It appears, however, that since f is undefined for T << rB we must write 

U j l ( 0 )  = U B j l ( 0 ) .  (2.12) 

This is justified a posteriori by the calculations below (00  2.2 and 2.3).  
Equations (2.6) and (2.8)-(2.12) are the basic results to be used in this paper. The 

calculations involve evaluating ensemble averages of functions of the (Ar,} and the {Q} .  
In doing these we exploit the fact that the random displacements {Argi(7)} and velocities 
{t)~~} are statistically independent of the particle positions {ri(0)}, and hence of the 
zero-time spatial derivatives of U. Thus, averages over the { A h i }  and the {ugi} can be 
performed separately from those over the U derivatives and other functions of the {ri}. 
In evaluating the former we use equation (2.8), the assumption that T >> 78 and the 
statistical independence of the Brownian velocities uB of different particles (valid when 
hydrodynamic interactions are neglected), which give 

( U B k a  ( f ) U B l @ ( t ’ ) )  2DOSkIS&(f - t’)* (2.13) 

Here the angular brackets indicate an ensemble average, 6kl is the Kronecker delta and 
S(t - t’) the Dirac delta function; Do is the ‘free-particle’diffusion constant given by the 
Kubo relationship 

(2.14) 

Two further identities, valid for systems in thermal equilibrium, are useful in the 
calculations: 
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(i) the 'stationarity condition' for statistically stationary variables A and B, 

d(A(t)B(t + = 0 = (A  ( t )B  (t + 7) )  + (A( t )@( t  + 7) )  
dt 

so that 

(A(O)B(d) = - (A(~)@(T)) ;  (2.15) 

(ii) the 'Yvon identity' for any regular function G[{ri}]  of particle positions (Yvon 
1943, de Gennes 1959) 

(2.16) 

2.2. The mean-square displacement 

The mean-square displacement of a particle is obtained by squaring equation (2.6) and 
following the averaging procedure outlined at the end of § 2.1. As an illustration we 
calculate the first two terms in (A& ( T ) ) ,  which come from the first three terms in (2.6), 
in some detail. To order T~ we have 

(2.17) 

The first term is clearly 2D07, the mean-square displacement of a free particle, as can be 
verified by use of (2.8) and (2.13). In the second term the averages over U and Ai  can 
be performed separately; since the system is spatially isotropic, (aU/arjl) = (ArBil) = 0. 
Use of (2.16) and (2.14) gives, for the third term, 

'(iE)z)=""'2(Q!)* 
f z  aril f arj1 

After separation of averages and use of (2.8) and (2.13), the fourth term becomes 

Higher terms can be evaluated similarly; in appendix 1 we discuss the square of the third 
term in (2.6). After collecting terms, the final result, to order 2, is 

2.3. The velocity autocorrelation function 

By multiplying (2.11) by (2.12) and averaging we get 

d'(T) = ( V ~ I ( O ) ~ ~ I ( T ) )  

(2.19) 
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It is easily verified that (2.18) and (2.19) obey the identity 

( A & ( T ) ) = ~  J T ( ~ - t ) 4 ( t ) d t  0 (2.20) 

which follows from (2.7). This provides the a posteriori justification for equation (2.12). 

2.4. The dynamic structure factor F(K, T )  

For a system of N identical Brownian spheres the dynamic structure factor F(K, T ) ,  

measured by inelastic scattering techniques, is 

F(K, T )  = N-' 1 (exp{iK [ri(O) - r j ( ~ ) ] } ) .  
i,i 

(2.21) 

Here K is the scattering vector which is now taken to be in the '1' direction. Adopting 
the notation 

(2.22) 

(2.23) 

F(K, T )  can now be evaluated by expanding the second exponential in (2.23), using (2.6) 
and averaging. In fact the calculations are greatly simplified if we start from 

ri(0) - rj (0)  E rij 
we get 

F(K, T )  = N-' 1 (exp(iKrijl) exp[-iKArjl(~)]). 
i,j 

which follows from (2.21) with use of (2.15). The coefficients lim.,,oqd"F/dT" of a 
MacLawin series expansion of F(K, T) are obtained by expansion of the last exponen- 
tial in (2.24) and use of (2.6), (2.8) and (2.11)-(2.16); it should be remembered that, 
because of (2.13), the true T + 0 limit is not taken and all results apply at T >> TB. 

Obviously 
lim, F(K, T )  = F(K, 0) S(K), (2.25) 
'T*o 

where S ( K )  is the static structure factor. A single integration of (2.24) gives 

= - D ~ K ~ .  

It can also be shown that 

d2F(K 7) = D 2  4 OK +- aril aril lim 
'7-0' dT2 Nf 1.1 

and 

d3F(K, T )  
lim 
'~-0' d~~ 

(2.26) 

(2.27) 

(2.28) 
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2.5. The self-dynamic structure factor F,(K, r )  

The self-dynamic structure factor F.(K, r )  for a system of identical Brownian particles is 

F,(K, r )  = (exp[-iKAril(r)]). (2.29) 

Its MacLaurin expansion can be found either by direct calculation or by setting i = j in 
equations (2.25)-(2.28). The results are 

(2.30) lim F,(K, r )  = 1, 
'T-0' 

(2.31) 

(2.32) 

(2.33) 

3. Short times (to order 7 )  with hydrodynamic interactions 

Equation (2.24) is an exact expression for a system of classical interacting particles 
which thus applies in the presence of hydrodynamic interactions. After an integration 
(2.24) can be written in vectorial notation: 

dF(K' = -Ne' I 'dt(K ui(O)ui(t) * K exp(iK rii) exp[-iK Q Arj(t)]). (3.1) 
d r  i.i 0 

Hydrodynamic interactions have two related effects: firstly, due to correlations between 
the fluctuating solvent forces at different points in the liquid, the Brownian displace- 
ments ArB (and velocities %) of different particles are no longer independent; secondly, 
the interaction or drift displacement of particle] (the second term in (2.4)) depends not 
only on the interaction force on particle j but also on the forces on all other particles. It 
is in treating the second effect that we have encountered difficulties. However, to first 
order in r, we can write, following the treatment of 6 2.4, 

(3.2) 

where the velocities {ui} have been replaced by their rapidly fluctuating components 
{%i} and Ari(t) set to zero. Simplification of (3.2) is more difficult than that of (2.24) 
since the { i ) ~ ~ }  correlations depend on the instantaneous spatial configuration {ri} of the 
particles. However, we can exploit the separation of timescales inherent in Brownian 
motion, i.e. the fact that the fluctuation time rB of the {uBi} is much smaller than the 
'structural relaxation time' rI over which significant changes occur in the spatial 
configuration {ri} (6 2.1). Thus we first average the rapidly fluctuating velocities {uBi} 
over a sub-ensemble, all members of which have the same configuration {ri}, and then 
perform the spatial average. This gives 
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The diffusion tensors are given by 

D:j= jOm dt(%i(O)t'Bj(t)> (3.4) 

and depend, in general, on the instantaneous positions of all the particles. The 
short-time effective diffusion coefficient Deff(K) (which describes the initial decay of the 
normalised correlation function F(K, T ) / S ( K ) )  is thus 

(3.5) 

Deff (K)  describes the motion of the particle system away from an initial configuration 
over times TB<< T<< T~ and therefore over distances much less than the interparticle 
spacing (indeed much less than the particle radius), averaged over all possible starting 
configurations. 

A physical interpretation of (3.4) is provided by a linear-response treatment of the 
Fokker-Planck equation describing N interacting Brownian particles subject to a set of 
constant external forces {Fi}. Hess (1980) used this method in a discussion of the 
long-time (T >> T ~ )  friction coefficient of the suspension. This approach is easily adapted 
to the 'plateau' timescale TB << T G T~ with the result 

( 0 i ) F  = b;j({ri}) * F,, (3.6) 

indicates an 

D,*(K) = [NK'S(K)]-' (K * Di,{{ri}) * K exp(X * rjj)). 
i.i 

i 

where ( t ) i )F is the coarse-grained (drift) velocity of particle i, and ( 
average over the rapid fluctuations in uBi. The mobility tensors {b;i} are given by 

bij= (kT)-'Dk. (3.7) 
From (3.6), bii is interpreted as the mobility of particle i modified by the presence of 
other particles, whereas biidescribes the increment in the velocity of particle i caused by 
a force on particle j .  

This interpretation allows, in principle, the calculation of the mobility tensors from 
macroscopic hydrodynamics. To date it has only proved possible to treat analytically 
the hydrodynamic interaction between an isolated pair of particles at fixed separation. 
Thus we are forced to consider particle concentrations low enough that the probability 
of finding two particles in a suitable small volume element greatly exceeds that of 
finding higher-order clusters. Using low-Reynolds-number, two-body hydrodynamics 
(for an incompressible fluid) Felderhof (1977) has obtained expressions for the Dii in 
convenient series form. With stick boundary conditions these become 

(3.9) 
1 a6 

3 a  1 a 3  75 a7 a* 
4 r12 2 r12 4 r 1 2  r12 

B(rlz) =Do[ - -(I + P) +- ~ ( 1 -  3P)+- 7 P +  O( g)] ,  (3.10) 

1 is the unit dyadic, P = r I 2 r l 2 / d 2 ,  r12 = lr12l and a is the particle radius. The much used 
Oseen (or point-particle) approximation takes the lowest-order terms in (3.8): 

(3.11) 3 a  
4 rij 1 sij + - -(I + P)( 1 - sij)). 
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Combination of (3.5) and (3.8) gives 

D.R(K)=[S(K)I - ' (DO+~K-~ jd3rg( r )K [A(r)+exp(iK - r)B(r)] * K), (3.12) 

where n is the number of particles per unit volume and g(r) is the radial distribution 
function. Use of (3.9) and (3.10) in (3.12) gives 

where 
4 3  +=J.rra n 

is the volume fraction of particles in the suspension and 

sin Kr cos Kr sin K -+--- 
(Kr)' (Kr)3 3 ' 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

3 "  9 a 6  5 a 4  
AA = 7 I dr  r2g(r)( F-- -) 

a 0  4 r 4  ' 

(3.17) 

(3.18) 

where j2(Kr) is a spherical Bessel function. In replacing g(r) by g(r) - 1 in the Oseen 
contribution A $  we have exploited the identity (Altenberger and Deutch 1973) 

(3.19) 

thereby ensuring its convergence. 
The effective diffusion coefficient D& describing the initial (TB << T << q) decay of the 

self-dynamic structure factor F,(K, T )  (equation (2.29)) can be calculated by a similar 
procedure (or simply by taking the i = j  terms in (3.2)) to give 

% = Io df(VBil(O)VBil(f))=(K DL(r12) * K)/K2=Do(l +AA+). (3.20) 

Identification between expressions (3.4) and (3.8)-(3.10) for the diffusion tensors 
Dij can also be made through the Landau-Lifshitz (1959) theory of fluctuating hydro- 
dynamics. For point particles, the particle velocity usi can be taken as the fluid velocity 
V(ri) at the position ri of particle i. A compact form, derived in appendix 2, for the 
velocity correlation (i Zj) is then, for 7 > 0 

m 

(%i(o)UBj(r)) 

= ( v[ri (0)l v[ri(T)I) 

P 

(3.21) 
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where p is the fluid density, v = q / p  its kinematic viscosity and y is an incomplete 
gamma function (Abramowitz and Stegun 1965, p 260). This correlation function is 
seen to decayon a timescale 

(3.22) 

characteristic of shear diffusion between the particles. Typically r~ is much smaller than 
the structural relaxation time T ~ .  On the timescale r >> m, typical of many experiments, 
we may replace (3.21) by the form obtained if transient inertial effects are omitted from 
the analysis (see appendix 2): 

2 rH=rij/v 

(3.23) 

Thus, in the point-particle limit, we can identify Dg with the Oseen tensor (with use of 
(3.4) and (3.11) for i Zi), and a calculation relaxing the point-particle approximation 
would be expected to yield Felderhof's full expressions (3.8)-(3.10). Indeed Mazur 
(1981) has recently obtained terms to order a3/rS in Dij by this approach. 

4. Long-time, K+O limit 

In the K -* 0 limit, the dynamic structure factor F(K, r )  describes the fluctuating growth 
and decay of a spatial Fourier component of particle number density with wavelength 
27r/K much greater than any characteristic length in the suspension (e.g. the range of 
the interparticle interaction) and on a timescale much greater than any characteristic 
time in the system (e.g. the structural relaxation time rI, 02.1). Such macroscopic 
number density fluctuations are expected to be small in amplitude (compared with the 
average number density) so that they decay according to a linear diffusive mechanism 
(Weissman and Ware 1978). Thus we expect 

where D, is the same collective diffusion coefficient as would be measured in con- 
ventional gradient diffusion experiments. By comparing the long-time, small-K limit of 
(3.1) with (4.1) we obtain a microscopic expression for D,: 

where the diffusion tensors Dii are given by 
m 

Dij = Jo dt(oi(O)oj(t)) (4.3) 

and differ from the D;of (3.4) in that it is the full particle velocities {U& rather than their 
Brownian components {Dgi}, which enter. 

For the case where hydrodynamic interactions can be neglected, substitution of (2.9) 
and (2.12) in (4.2) gives 
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If the interparticle potential is taken to be pairwise additive, it follows from (2.10) that 

c Q,l(t) = 0, (4.5) 
i 

since pairs of particles exert equal and opposite forces on each other. Thus the second 
term in (4.4) is zero, and comparison with (3.5) shows that 

D, = lim De&), (4.6) K -0 

giving the result, rather surprising at first sight, that the drift velocity components (4) do 
not contribute to collective diffusion and that, at K + 0, the short-time, TB << 7 << 71, and 
long-time, T >> 71, decays of F(K, T )  are described by the same diffusion coefficient. By 
use of a memory-function approach, Ackerson (1978) has shown that this conclusion 
holds also in the presence of two-body hydrodynamic interactions. 

Use of (3.13)-(3.18) in (4.6) gives (see also Felderhof 1978) 

Dc = Do[ 1 4 (ho + AD + As A A ) ] / ( ~  &AV), (4.7) 
where 

3 "  
a 0  

AV = I dr r2 [g ( r )  - 13. 

For hard spheres, to first order in 4, one has 

g ( r )  = 0, 

g ( r )  = 1, 

r < 2a, 

r > 2a, 

giving 

Dc=Do(l i-1.564). 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

The long-time self-diffusion coefficient D,, which describes the long-time (7 >> T ~ )  

decay of F,(K, 7 )  and can be identified as the macroscopic tracer diffusion coefficient, 
follows from taking the i = j terms in (4.4) (or directly from the Kubo relationship): 

I." 

The first term in (4.15) is simply the short-time effective diffusion coefficient D:ff 
(equation (3.20)). However, by contrast with collective diffusion (equation (4.4)), the 
second term in (4.15) is not zero, since the instantaneous interaction force on a single 
particle is generally non-zero. Thus the average motion of a single particle in an 
interacting suspension is characterised by two self -diff usion coefficients: D&, which 
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describes motion over distances much smaller than the typical interparticle separation 
and differs from the free-particle value Do only because of hydrodynamic interactions; 
Os, which describes motions over long distances and depends explicitly on the direct 
interparticle forces. 

5. Discussion 

5.1. General comments 

Perhaps the main justification for this work is that the more explicit treatment of 
particle velocities inherent in the Langevin approach, as compared, for example, with 
approaches based on the generalised Smoluchowski equation, allows (in some cases at 
least) easier calculations and greater insight into dynamical processes in particle 
suspensions. It should be mentioned that several of the results discussed in 00 2-4 are 
not new but were included in an attempt to provide a logical development. The basic 
equations (2.6) and (2.11) and the results for the mean-square displacement (2.18) and 
velocity autocorrelation function (2.19) do not appear to have been quoted before; 
however, the first two terms of (2.6) form the basis for the ‘Brownian dynamics’ method 
of computer simulation (Ermak 1975, Gaylor eta1 1981). Results (2.26) and (2.27) for 
dF/dT and d2F/dT2 were derived by Ackerson (1976) from the Smoluchowski equa- 
tion; result (2.33) for d3Fs /d~3  was obtained by W Hess (private communication), 
whereas equation (2.28) for d 3 F / d ~ 3  appears to be new. The central result of 03, 
expression (3.5) for DeR(K), the K-dependent, short-time diffusion coefficient which 
includes the effects of hydrodynamic interactions, was derived by Ackerson (1976) and 
Akcasu and Gurol (1976) (see also Altenberger 1974, 1976, Hess and Klein 1979). 
Provided the relation (3.4) between diffusion tensors and velocity correlations is 
accepted (see also Batchelor 1976, Wills 1979), then our derivation of (3.5) is both 
direct and instructive. Equation (3.13) for Deff(K),  which includes a full and explicit 
treatment of two-body hydrodynamic interactions, has been obtained recently by 
several authors (Russel and Glendinning 1981, Fijnaut 1981, Pusey and Tough 1982) 
and will be discussed further in 0 5.3. The discussion in 0 4 is related to that of Ackerson 
(1978), Dieterich and Peschel(1979), Hess and Klein (1979) and Hess (1980) who used 
a memory-function approach to the Smoluchowski equation. Again the approach 
based on velocity correlations provides a different insight. The existence of two 
self-diffusion coefficients (see last paragraph of 0 4) was also recognised some years ago 
by Harris (1973) and Jacobs and Harris (1977). 

Since the present paper was essentially completed, Phillies and Wills (1981) have 
published a similar, though less direct, treatment of the dynamic structure factor 
F(K, 7) .  Their expression for Deff(K) differs from the results of Russel and Glendin- 
ning (1981), Fijnaut (1981) and equation (3.13) in that AA is erroneously found to be K 
dependent. Also their expression for d2F/dr2 differs slightly from the results of 
Ackerson (1976) and equation (2.27). In earlier work Phillies (1977, 1981) also 
discussed the effects of g velocity components on self-diffusion and collective diffusion 
by a somewhat different approach from that used here. 

We take this opportunity to point out an error in our previous related work. In one 
of the first derivations of (2.26) Pusey (1975) proposed writing the particle velocity as 
the sum of two components as in (2.9). There it was assumed that uB and VI were 
uncorrelated. The considerations of 0 2.3, in particular, show this assumption to be 
incorrect (see, also, Phillies and Wills 1981). Indeed ( V ~ Z ) T )  correlations play a central 
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role in the theory, the value of the drift component v I ( r )  at time r depending, through 
(2.10), on the particle configuration { r l ( r ) }  at time r and hence on the past history of 
random (and drift) displacements. Fortunately this incorrect assumption did not affect 
the conclusion of the paper. 

Except in 0 4, we do not, in this paper, evaluate the expressions obtained for specific 
systems. In some cases this would be very difficult; for example, evaluation of d3F/dr3 
(equation (2.28)) would require knowledge of the three-particle distribution function. 
It should be emphasised that the value of the results derived here is that they are exact 
(at least to the same extent that Langevin and Smoluchowski equations provide an exact 
description of Brownian motion). Thus approximate theories, based for example on 
mode-coupling memory-function approaches, can be tested against them. A similar 
situation exists in theories of simple liquids (e.g. Boon and Yip 1980, p 44), and it is 
instructive to pursue this analogy further. 

5.2. Comparison with simple liquids 

The similar functional forms of the derivatives dF1d.r and d2F/dr2, (2.26) and (2.27), of 
the dynamic structure factor F(K, r )  of particle suspensions, and the derivatives 
d2F/dr2 and d4F/dr4 for simple atomic liquids (de Gennes 1959) were pointed out by 
Ackerson (1976) (see also Pusey 1975). Here we concentrate on the velocity autocor- 
relation function and mean-square displacement. 

For atom j in a simple liquid we can expand the velocity in time r (Nijboer and 
Rahman 1966): 

(5.1) Ujl(T)  = U j l ( 0 )  + Zjjl(0)T + Uj1(0)T2/2+. . . . 
Newton’s second law gives 

so that 

Use of (5 1)-(5.3), the equipartition theorem and the fact that, for a system of classical 
interacting particles, the velocity of particle j at time zero is uncorrelated with the 
zero-time positions and velocities of all other particles gives 

4(7) = (u j ) i l (O)v j1(~) )  

kT kTr2 a2 kTr4 a2u 
m 2m2 ar;, 24m k , arjlarka 

- ----(-7++1((-) )+ . . . .  (5.4) 

Substitution of (5.4) into (2.20) gives 

Comparison of (5.5) and (2.18) shows further the formal similarities (and 
differences) between the dynamics of particle suspensions (if hydrodynamic inter- 
actions are neglected) and simple liquids. Remembering that Do = kT/f (equation 
2-14)), we see, aside from numerical factors, two main differences. Firstly, the friction 
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coefficient f in a suspension plays the role of the atom’s mass in a liquid. This is 
apparently associated with different ‘equations of motion’, equation (2.10) which 
connects the force with a drift velucify and Newton’s law (5.2) which, of course, 
connects force and acceleration. Secondly, the powers of T in the expansions are 
different. In the case of a simple classical liquid (5.5) applies down to the true r = 0 limit 
and the motion must be time reversible, so that only even powers of T are found. 
Equation (2.18) for a suspension applies only for T >> T ~ ;  the rapidly fluctuating motion 
caused by the suspending liquid is averaged over and time reversibility is not required. 

The above considerations are clearly related to the idea, developed by Hess and 
Klein (1981), that the particles in a colloidal suspension can be viewed as forming an 
‘overdamped fluid’. 

Another point of similarity with simple liquids concerns the statistics of the 
displacement Arjl(7). If these are Gaussian we have 

\ L  

whereas in the general case we must write (e.g. Nijboer and Rahman 1966) 

(5.7) 

For simple liquids the lowest-order contribution to the non-Gaussian term y ( ~ )  goes as 
7’ (Schofield 1961). Expansion of both sides of (5.7) and use of (2.18) and (2.31H2.33) 
show that, for particle suspensions, y ( ~ )  contains no terms of order less than r4. Thus, 
as with simple liquids, the Gaussian approximation (5.6) for F,(K, r ) ,  which must be 
correct at short (7 << T ~ )  and long ( r  >> T ~ )  times, is probably not too bad at all times for 
particle suspensions. This conclusion is supported by the recent Brownian dynamics 
computer simulations of Gaylor et al (1981). 

5.3. Timescales in theories of diffusion of interacting Brownian particles 

An advantage of the approach used in this paper is that characteristic timescales enter 
the problem naturally and explicitly. In equation (2.9) the particle velocity is written as 
the s u m  of a drift component vl, caused by the interparticle forces, which fluctuates on 
timescale rI characteristic of significant changes in the spatial arrangement of the 
particles, and a solvent-induced component uB which fluctuates much more rapidly on 
timescale rB (<< rI)  over which the particle configuration barely changes. The diffusion 
coefficients describing the particle dynamics are expressed in terms of integrals over 
time correlation functions of these velocity components (equations (4.4) and (4.15)). In 
general, therefore, one would expect both fast and slow processes to contribute to these 
coefficients. 

In fact there has been some confusion concerning the timescales over which recent 
theories apply (see also Marqusee and Deutch 1980, Pusey and Tough 1982 for further 
discussion). Batchelor (1976) generalised Einstein’s discussion of Brownian motion to 
include the effects of interparticle interactions, whereas Felderhof (1978) reduced the 
Smoluchowski equation to a diffusion equation in the particle density via a B B O K Y - ~ ~ ~ ~  
hierarchy. To anticipate our conclusion, it appears that both these authors expected 
their theories to apply on the macroscopic timescale T >> rI, whereas, in fact, they apply 
on the intermediate or ‘plateau’ timescale rB << r << 71. For collective diffusion Felderhof 
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obtained equations (4.7)-(4.14), while for hard spheres to first order in 4 Batchelor 
obtained 

D,=Do(l+ 1.454) (5.8) 
which differs from (4.14) in that hydrodynamic interactions were treated in a slightly 
different way. However, the essentially equivalent results of Batchelor, Felderhof and 
equation (4.14) do not contribute to the discussion of timescales, since the collective 
diffusion constant is, for pairwise-additive interactions, expected to be the same on both 
short, TB << T << T ~ ,  and long, T >> TI ,  timescales (Ackerson 1978 and § 4). 

Difficulties appear, however, with self-diff usion. By considering the diffusion of 
tagged particles at low concentration in a suspension of otherwise identical particles 
Batchelor (1976) and Jones (1979) (who extended Felderhof’s approach to suspensions 
containing two species of particle) derived a result for the self-diffusion coefficient 
essentially identical to (3.20). (Because of their different treatments of hydrodynamic 
interactions, Batchelor found A A  = -1.83, Jones found AA = -1.73.) This is clearly a 
short-time, TB << T << T ~ ,  result (see § 3) and does not contain the extra term (the second 
term in (4.15)) which includes the longer-time, T = T ~ ,  effects of direct interactions. 

The reason why Batchelor’s (1976) theory is ‘short-time’ seems clear: he specifically 
assumed that the change in particle configuration during the relaxation time of the 
particle velocity correlation function was negligible and thereby neglected possible 
effects of long-lived uI correlations. The problem with the approach of Felderhof 
(1978) and Jones (1979) is less obvious, but may be inherent in the low-density 
expansion they use to decouple the BBGKY-type hierarchy of equations obtained from 
the N-particle Smoluchowski equation. As was pointed out by Bogoliubov (1962), 
results obtained from such low-density expansions are valid only over short times 
before ‘drift’ (uI) motions become important. 

Recently Russel and Glendinning (1981) and Fijnaut (1981) have obtained expres- 
sions for a wavevector-dependent diffusion coefficient which extend earlier work of 
Altenberger (1976) by a more complete treatment of hydrodynamic interactions. None 
of these authors discusses timescales in any detail; however, their results are essentially 
the same as those of equations (3.13)-(3.18) and must therefore be recognised as 
applying only at short times, TB << T << T ~ .  This restriction to short times seems to stem 
from linearisations, inherent in all the treatments, which are not generally valid at 
non-zero wavevector (see e.g. Ackerson 1978, Weissman and Ware 1978) but apply 
only to small (short-time) displacements from a given initial configuration of particles. 
By contrast, Phillies and Wills (1981) clearly recognised the short-time nature of their 
calculation (discussed in § 5.1 above). 

The considerations of this section thus show that the main theoretical challenge in 
this field remains a full description of the dynamic structure factor F(K, T )  away from 
the K -* 0 and T << T~ limits. Although not discussed here, significant progress has been 
made in this direction by the projection-operator, memory-function approach of 
Ackerson (1978), Dieterich and Peschel(l979) and Hess and Klein (1979,1980,1981) 
(also Hess 1981); however, hydrodynamic interactions have yet to be incorporated fully 
in these theories. Recently there have also been several discussions of the second term 
in (4.15), the long-time contribution to the self-diffusion coefficient (Marqusee and 
Deutch 1980, Pusey and Tough 1982, G K Batchelor 1981, private communication). 
The structure of the long-time contribution to the particle velocity autocorrelation 
function was also discussed earlier by Harris (1973) for charged particles and by Jacobs 
and Harris (1977) for hard spheres. These authors found power-law long-time decays 
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similar to the ‘long-time tails’ found in the velocity autocorrelation functions of atoms in 
simple dense liquids. 

Finally we note that much of the theoretical development in this paper has assumed 
the existence of a continuous, differentiable interparticle potential U. This, therefore, 
excludes the commonly considered case, conceptually simple but not encountered in 
reality, of true hard spheres. As is the case with hard-sphere simple liquids (e.g. Boon 
and Yip 1980), we expect that hard-sphere colloidal suspensions will require special 
theoretical treatment. Nevertheless, it is generally possible to &fine a relaxation time 
rI for the decay of local structure around a given particle so that the conclusions reached 
in this section concerning timescales should be valid for arbitrary direct (and hydro- 
dynamic) interactions. 
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Appendi. 1. Calculations for 0 2.2 

Evaluation of the term in (A& (7 ) )  (see § 2.2) which comes fram squaring the third term 
in (2.6) requires care. Use of (2.8) and (2.13) gives 

The quadruple integral is re-ordered and integrated by parts to give 

jOT dt jot dt” joT dt’ jot’ dt“’ S(t” - P‘) 

= joT dt jot dt”( 7 loT dt”‘ S(t” - t”‘) - 5 dt’ t’ S(t” - t ’)) 
0 

= r3 /3 .  

Collection of similar terms in the square of (2.6) then leads to equation (2.18). 

Appendix 2. Deriv&ion of equation (3.21) 

From the Landau-Lifshitz (1959, ch 17) theory of fluctuating hydrodynamics we see 
that the correlation function of Cartesian components (a, p) of the spatial and temporal 
Fourier components of the velocity in an incompressible fluid with shear viscosity 7 and 
density p is 
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Fourier inversion gives, for 7 > 0 

We express SUB - kukp/k2 and exp(ik * rij) in terms of rotationally irreducible sets of 
quantities (in the latter case by means of the Rayleigh plane-wave expansion and the 
spherical harmonic addition theorem (Brink and Satchler 1968, p 151)). The angular 
integrals are then carried out straightforwardly; the integrals over k are of the form 

.m 1 jr(krji) exp(-k’w)k2 dk, 1 =o, 2, 
0 

(A2.3) 

wherejr(krjj) is a spherical Bessel function. The integrals (A2.3) can be evaluated using 
a result given by Watson (1944, equation (13.3.2)) to give (3.21). In the T >> rH limit, 
transient inertial effects will have decayed, as is expressed formally by setting p = 0 in 
(A2.1). The result (3.23) is obtained by performing the Fourier inversion procedure 
outlined above. Finally, we note that the analysis leading to (3.21) also provides a new 
form of the Green function appropriate to unsteady creeping flow which is more 
compact than that quoted by Altenberger (1979) and Oseen’s integral representation 
quoted by Happel and Brenner (1973, p 83). 
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